Regioselective $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$-Promoted Reactions of Methyl Diazoacetate with Terminal Triple Bond Enynes

Evgeny A. Shapiro, Alexey V. Kalinin, Bogdan I. Ugrak and Oleg M. Nefedov*
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47. Moscow 117913, Russia

Abstract

The selective $R h_{2}(\mathrm{OAc})_{4}$-promoted methoxycarbonylmethylenation of a triple bond in enynes, with a terminal triple bond, by methyl diazoacetate is established, and the main factors, affecting the regioselectivity of the process, are elucidated. The easy in situ $[2+2]$-dimerization of methyl 1 -alkenylcyclopropene-3-carboxylates in dimethyl trans-1,2-dialkenyltricyclo[3.1.0.0 $0^{2.4}$] hexane-3,6-dicarboxylates 2 is found, and their thermal rearrangement into dimethyl trans-1.2-dialkenylcyclohexa-1,4-diene-3,6-dicarboxylates 7 is also described.

Alkenes and alkynes are known to react easily with alkyl diazoacetates (ADA) in the presence of $\mathrm{Rh}^{\mathrm{II}}$ catalysts to yield cyclopropane- and cyclopropene-carboxylates respectively. ${ }^{1}$ Meanwhile reactivities of double and triple bonds conjugated in enynes are unpredictable. Thus, in conjugated enynes with internal multiple bonds the double bonds are usually active, ${ }^{2,3}$ though preferable alkoxycarbonylmethylenation of the triple bond has been observed in the case of unconjugated enynes. ${ }^{4}$ Recently we have discovered ${ }^{5}$ the selective methoxycarbonylmethylenation of the terminal triple bond of enynes in the course of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$-promoted deazotation of methyl diazoacetate (MDA) in the presence of but-3-en-1-yne 1a. From this point of view it was interesting to find out if the selective methoxycarbonylmethylenation of the triple bond in 1a has a general character. So, we have investigated the $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}{ }^{-}$ promoted reactions of MDA with series of enynes $\mathbf{l b}-\mathbf{h}$, which have a terminal triple bond.

Results and Discussion

Experiments have been carried out in the presence of $0.2 \% \mathrm{~mol}$ of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20-25^{\circ} \mathrm{C}$. To reach the complete conversion of MDA a $2.5-3.0$-fold excess of enynes $\mathbf{1 b}$-d was used. In the case of low activity enynes $1 \mathbf{e}$ and g the experiments were run with a $2.0-3.0$-fold excess of MDA.
Enynes $\mathbf{1 c}-\mathbf{f}$ have been found to react with MDA in the same way as 1a. With the exception of $\mathbf{1 b}$ reactions proceeded selectively, involving only the triple bond, to afford up to 70% yields of dimethyl trans-1,2-dialkenyltricyclo[3.1.0.0 ${ }^{2.4}$]hexane-

3,6-dicarboxylates $\mathbf{2 c - f}$, which are $[2+2]$-cycloadducts of the corresponding methyl 1-alkenylcyclopropene-3-carboxylates 3 (Scheme 1). The reaction of $\mathbf{1 b}$ with MDA led to the corresponding $\mathbf{2 b}$ in 46% yield alongside the double bond carbene adduct, methyl cis/trans-2-methyl-2-ethynylcyclopropanecarboxylate 4, which was isolated in 25% yield. Enyne 1 g remained unchanged under these conditions; in this case MDA deazotation was accompanied by dimethyl fumarate and maleate 5 formation. In small quantities ($<15 \%$), 5 was detected in all other enynes as well. Yields and properties of $\mathbf{2}$ are shown in Tables 1-3.
The structure of 2 was established on the basis of NMR spectroscopic data and by chemical transformations. Thus, the significantly lower field shifts of the magnetically equivalent H^{a} and H^{d} protons in 2 ($\delta 2.39-2.84$), caused by magnetic anisotropy of cyclopropane rings, ${ }^{6}$ in comparison with those of the cyclopropanecarboxylates ($\delta 1.7-2.1$) indicate an in-plane position of these protons, with respect to the neighbouring cyclopropane rings, that accords well with the chair conformation of the tricyclohexane fragment. Additional evidence for the chair conformation is the low value of $J_{b c} \sim 0$ Hz , obtained from ${ }^{13} \mathrm{C}$ satellite spectra of H^{b} in 2a, \mathbf{c}. This observation corresponds well to the expected value for the vicinal coupling constant of tricyclohexane, as the dihedral angle $\mathrm{H}^{\mathrm{b}}-\mathrm{C}-\mathrm{C}-\mathrm{H}^{\mathrm{c}}$ in the chair conformation for such polycycles is close to 90° (see ref. 7). The low values of the coupling constants $J_{\mathrm{ab}}=J_{\mathrm{cd}}=1.0-2.0 \mathrm{~Hz}$ testify accordingly ${ }^{8}$ a trans-arrangement of the corresponding protons and as a result a transarrangement of the $\mathrm{CO}_{2} \mathrm{Me}$ groups.

Table 1 Properties of compounds 2a-f and 7c and d

Compd.	Yield (\%) ${ }^{\text {a }}$	M.p. ${ }^{\circ} \mathrm{C}$	$v(\mathrm{KBr}) / \mathrm{cm}^{-1}$	$m / z(\%)$
2a	70	100-105 (decomp.)	1720 ($\mathrm{C}=0), 1628(\mathrm{C}=\mathrm{C})$	$\begin{aligned} & 248\left(\mathrm{M}^{+}, 0.3\right), 216(3), 189(28), 157(78), 130(50), 129 \\ & (100), 115(55), 105(27) \end{aligned}$
2b	$46^{\text {b }}$	Oil ${ }^{\text {c }}$	1736 (C=O) , ${ }^{\text {d }} 1639(\mathrm{C}=\mathrm{C})$	$\begin{aligned} & 276\left(\mathrm{M}^{+}, 0.6\right), 244(9), 217(24), 201(12), 186(15), 185 \\ & (100), 184(10), 169(14), 158(28), 157(71), 143(71) \end{aligned}$
2c	67	94-97	1728 (C=O) 1670 ($\mathrm{C}=\mathrm{C}$)	$\begin{aligned} & 304\left(\mathrm{M}^{+}, 3\right), 272(7), 245(31), 229(18), 213(49), 203(41), \\ & 197(22), 189(53), 171(60), 157(37), 143(58) \end{aligned}$
2d	11	60-62	1732 (C=O), 1643 ($\mathrm{C}=\mathrm{C}$)	$\begin{aligned} & 356\left(\mathrm{M}^{+}, 1\right), 324(6), 297(20), 265(69), 237(43), 195(48), \\ & 186(83), 165(38), 155(54), 141(55), 128(67) \end{aligned}$
2e	25	Oil ${ }^{\text {e }}$	$1724(\mathrm{C}=\mathrm{O}),{ }^{d} 1645,1597(\mathrm{C}=\mathrm{C})$	$\begin{aligned} & 456\left(\mathbf{M}^{+}, 3\right), 424(7), 365(11), 321(10), 279(14), 203(13), \\ & 202(16), 165(10), 131(54), 129(20), 119(72) \end{aligned}$
2 f	27	150-152	1732, 1720 (C=O), 1639 (C=C)	$\begin{aligned} & 273(10), 245(10), 213(21), 171(32), 155(23), 143(12), \\ & 142(20), 129(13), 128(38), 127(24), 115(21), 112(11) \end{aligned}$
7c	100	58-60	1732 (C=O), 1655, 1635 ($\mathrm{C}=\mathrm{C}$)	$\begin{aligned} & 304\left(\mathrm{M}^{+}, 24\right), 272(13), 246(18), 245(100), 229(25), 213 \\ & (90), 203(66), 197(22), 189(93), 185(27), 171(93) \end{aligned}$
7d	86	112-116	$1734(\mathrm{C}=0), 1649,1624(\mathrm{C}=\mathrm{C})$	$\begin{aligned} & 356\left(\mathrm{M}^{+}, 4\right), 324(4), 297(13), 265(31), 237(17), 195(20), \\ & 186(36), 165(22), 155(18), 141(30), 128(22) \end{aligned}$

${ }^{a}$ Preparative yields. ${ }^{b} \mathrm{~A} 25 \%$ yield of 4 was also obtained. ${ }^{c} n_{\mathrm{D}}^{20} 1.4947 ;{ }^{d}$ Taken in film. ${ }^{e} n_{\mathrm{D}}^{20} 1.5530$.

Table $2{ }^{1} \mathrm{H}$ NMR parameters of compounds 2a-f and 7a-d, f

Compd.	$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$						J / Hz			
	$\mathrm{H}^{\mathbf{a}}$	$\mathrm{H}^{\text {b }}$	R^{1}	R^{2}	R^{3}	OMe	$J_{\text {ab }}$	$J_{\mathbf{R}^{1} \mathbf{R}^{2}}$	$J_{\mathbf{R}^{1} \mathbf{R}^{3}}$	$J_{\mathbf{R}^{2} \mathbf{R}^{3}}$
$2 \mathbf{a}^{\text {a }}$	2.69 (d)	2.27 (d)	5.81 (dd)	5.21 (dd)	5.41 (dd)	3.68 (s)	1.5	10.8	17.5	1.9
$2 \mathbf{b}^{a}$	2.71 (d)	2.33 (d)	1.82 (br s)	5.00 (m)	4.81 (m)	3.61 (s)	1.1	1.5	1.0	-
$2 c^{a}$	2.66 (d)	2.18 (d)	5.25 (m)	1.70 (br s)	1.70 (br s)	3.62 (s)	1.5	1.5	1.0	-
$2 \mathrm{~d}^{a}$	2.59 (d)	2.25 (d)	$\begin{aligned} & 2.00\left(\mathrm{~m}, 4 \mathrm{H},=\mathrm{CCH}_{2}\right) \\ & 1.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) \end{aligned}$		5.50 (m)	3.57 (s)	1.0	-	-	-
$2 \mathrm{e}^{\text {b }}$	2.39 (d)	2.10 (d)	7.31 (br s)	2.02 (s)	1.52 (s)	3.55 (s)	1.0	-	$\overline{16}$	-
$2 \mathbf{f}^{\text {b }}$	2.83 (d)	2.55 (d)	6.92 (d)	3.75 (s)	6.09 (d)	3.75 (s)	2.0	-	16.0	-
$7 a^{\text {b }}$	4.23 (d)	5.94 (d)	6.95 (dd)	5.24 (d)	5.28 (d)	3.66 (s)	1.5	11.5	17.5	-
$7{ }^{\text {b }}$	4.10 (d)	5.89 (d)	1.89 (br s)	4.93 (m)	4.80 (m)	3.65 (s)	1.3	1.5	1.0	2.0
$7{ }^{\text {a }}$	3.88 (m)	5.89 (m)	5.47 (m)	1.69 (br s)	1.53 (br s)	3.66 (s)	-	1.5	1.0	-
$7 \mathrm{~d}^{\text {b }}$	4.10 (d)	5.89 (d)	$\begin{aligned} & 2.00(\mathrm{~m}, 4 \\ & 1.56(\mathrm{~m}, 4 \end{aligned}$	$\left.\mathrm{CCH}_{2}\right)$ $\left.\mathrm{H}_{2} \mathrm{CH}_{2}\right)$	5.50 (m)	3.63 (s)	1.2	-	-	-
$7{ }^{\text {b }}$	4.25 (d)	5.98 d	8.00 (d)	3.77 (s)	6.02 (d)	3.65 (s)	1.5	-	16.0	-

${ }^{a}$ Taken at $250 \mathrm{MHz} .{ }^{b}$ Taken at 90 MHz .

The correct conclusion about the mutual arrangement of alkenyl substituents in 2 cannot be made on the basis of NMR spectroscopic data. So, we have tried, as it was done ${ }^{5}$ for 2 a , to carry out the thermal isomerization of $\mathbf{2 b}-\mathbf{f}$ into dimethyl 1,4,6,7-tetrahydronaphthalene-1,4-dicarboxylates 6 , which is possible only in the case of vicinal alkenyl groups. However, only $\mathbf{2 b}$ appeared to be isomerized into $\mathbf{6 b}$ with 98% yield after 2.5 h refluxing in m-xylene at $144^{\circ} \mathrm{C}$; as a result of electrocyclic reaction dimethyl trans-1,2-di(1-methylethenyl)cyclohexa-1,4-dien-3,6-dicarboxylate 7b was initially formed (Scheme 2).

The tricyclohexanes 2 c and \mathbf{d} were found to be transformed into the cyclohexadienes $7 \mathbf{c}$ and \mathbf{d}, which were stable under these conditions and have been isolated as individual compounds and characterized by spectroscopic data (Tables 1-3). The vicinal arrangement of alkenyl groups in 7 c and d has been proved by observation of the cis-vicinal coupling J_{bc} in ${ }^{13} \mathrm{C}$-satellite spectra of H^{b}. The remarkably high value of the constant (10 Hz) shows unequivocally the location of alkenyl substituents at positions 1 and 2 of $7 \mathbf{c}$ and \mathbf{d}, and consequently their vicinal arrangement in 2 c and d . The tricyclohexane $2 f$ underwent the same isomerization to $7 \mathbf{f}$, but in the course of isolation by column chromatography on SiO_{2} it was aromatized completely into methyl 2,5 -di(methoxycarbonyl)-6-[2-(methoxycarbonyl)ethyl]cinnamate 8 , which can be considered to be correct evidence for structure $\mathbf{2 f}$ as well. Among the studied compounds
$\mathbf{2}$ only $\mathbf{2 e}$ did not undergo the isomerization and was stable even after 5 h refluxing in nonane at $150^{\circ} \mathrm{C}$.

The examples of thermal [$2+2]$-cyclodimerization of 1 -alkenylcyclopropene-3-carboxylates are not known. Moreover, 1,2-disubstituted cyclopropene-3-carboxylates are stable under similar conditions. ${ }^{3,9}$ The only example of such transformation

Scheme 2 Reagents and conditions: i, ii reflux, toluene or xylene, 2.5-10 h; iii $\mathrm{SiO}_{2}, 20^{\circ} \mathrm{C}$

Table $3{ }^{13}$ C NMR parameters ${ }^{a}$ of compounds 2a-f and 7a-d, f

2a-f
7a-d,f

${ }^{a}$ Recorded in CDCl_{3} at 22.5 MHz .
in other classes of alkenylcyclopropenes is 'head-to-head' [2 + 2]-cyclodimerization of 1 -vinylcyclopropene. ${ }^{10}$ To prove the tricyclohexane $\mathbf{2}$ formation, as a result of [$2+2$]-cyclodimerization of cyclopropene 3 , we have undertaken the alternative synthesis of $\mathbf{3}$ by hydrolytic desilylation of methyl 1-tri-methylsilyl-2-(2-methylprop-1-enyl)cyclopropene-3-carboxylate 9 , which we have recently prepared. ${ }^{9}$ This method is known to have been developed earlier for the synthesis of cyclopropene-3-carboxylate from 1-trialkylsilylcyclopropene-3carboxylates. ${ }^{11}$ However, the treatment of 9 with KF in aqueous DMF at $20^{\circ} \mathrm{C}$ gave not $3 \mathbf{c}$ but the corresponding $2 \mathbf{c}$ in 87% yield (Scheme 3). This result shows the extremely high

Scheme 3 Reagents and conditions: i, $\mathrm{KF}, 25^{\circ} \mathrm{C}$, DMF- $\mathrm{H}_{2} \mathrm{O}$
activity of 3 in the thermal [2 +2]-cyclodimerization and explains their absence in catalytic MDA-enyne reactions.
In our opinion there are two main reasons for the stereospecific proceeding of thermal $[2+2]$-cyclodimerization of 3: an additional stabilization of radical centres in 'head-tohead' biradical \mathbf{A} by vinyl groups in comparison with 'head-totail' biradical B; both of them are probable intermediates for

such cyclopropene transformations, ${ }^{10}$ and steric demands provided with cyclopropane fragments and $\mathrm{CO}_{2} \mathrm{Me}$ groups for biradical cyclization.

Yields of products given in Table 3 show a remarkable influence of the conjugation effect and double bond substitution on the regioselectivity of the $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$-promoted MDAenyne reaction.

Indeed, in contrast with conjugated enynes, pent-4-en-1-yne 1h having isolated double and triple bonds, reacts with MDA at

both multiple bonds resulting in methyl 1-(prop-2-enyl)cyclo-propene-3-carboxylate 10 and methyl cis/trans-1-(prop-2ynyl)cyclopropanecarboxylates 11 (cis/trans $=1: 1$) in 10:11 ratio 58:42 with 65% total yield.

These data indicate a significant difference between the double bond activity in unconjugated enynes and conjugated ones, that is probably the main reason for a high regioselectivity of conjugated enynes 1 in cyclopropenation.
Substituents at the double bonds affect the regioselectivity of MDA-enyne reactions in the similar way as they do in the reactions of ADA with 1,3-dienes. So a Me-substituent at C-3 caused the cyclopropanation of the adjacent double bond in 1,3dienes, ${ }^{12}$ the same orientation effect is displayed in the case of $\mathbf{1 b}$, resulting in a significant quantity of $\mathbf{4}$ being formed. In accordance with data ${ }^{12}$ terminal Me-substituents drastically decrease the activity of the double bond in enynes $1 \mathbf{c}$ and \mathbf{e}, in spite of activated effect of Ph at $\mathrm{C}-3$ in the last case. The low activity of enynes $\mathbf{1 f}$ and \mathbf{g} containing an electron-withdrawing $\mathrm{CO}_{2} \mathrm{Me}$ substituent is quite obvious. To a large extent the effect of the CO_{2} Me group reveals an internal location that induces the complete deactivation of the triple bond as well. The steric effects of substituents are demonstrated well in the case of enyne

1d. The bulky tetramethylene bridge hinders the attack of the Rh (il)-carbene complex and decreases the reactivity of both double and triple bonds.

Experimental

General Methods.-M.p.s were determined on a Kofler block and are uncorrected. IR spectra were measured on a Bruker IFS-113V spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} solutions at 90 and 22.5, and 300 and 75 MHz , respectively on JEOL FX 90Q and Bruker AW-300 instruments. Some ${ }^{1} \mathrm{H}$ NMR spectra were run at 250 MHz on a Bruker WM-250 instrument. Tetramethylsilane was used as the internal reference. The mass spectra were taken at 70 eV on a quadruple chromatomass-spectrometer, Finnigan INCOS-50. For GLC-analysis an OV-1501 column ($0.25 \mathrm{~mm} \times 30 \mathrm{~m}$) was used. Chromatographic columns were filled with CHEMAPOL L silica gel ($40-100 \mathrm{mesh}$). A solvent system of hexane-ether 6:1 (v / v) was used for product isolation. SILUFOL plates were applied for TLC.

But-3-en-1-yne 1a and 3-methylbut-3-en-1-yne 1b of commercial grade purity were used. 1-Ethynylcyclohexene 1d, methyl (E)-pent-2-en-4-ynoate 1 f and methyl (E)-pent-3-en-1-yn-3-ylcarboxylate were prepared according to the known procedures. ${ }^{13-15}$

4-Methylpent-3-en-1-yne 1c.-To an intensively stirred warm $\left(50^{\circ} \mathrm{C}\right)$ dispersion of Na powder $(27.4 \mathrm{~g}, 1.19 \mathrm{~mol})$ in nonane ($150 \mathrm{~cm}^{3}$) of commercial grade purity 1,1-dichloro-4-methyl-pent-1,3-diene ($46.8 \mathrm{~g}, 0.31 \mathrm{~mol}$) was added dropwise during 4-5 h . A temperature of $50-60^{\circ} \mathrm{C}$ was kept during the whole period of addition. The reaction mixture was cooled to $20^{\circ} \mathrm{C}$ and was carefully treated with $\mathrm{H}_{2} \mathrm{O}\left(200 \mathrm{~cm}^{3}\right)$. The organic layer was separated and the crude product was distilled off at $50-95^{\circ} \mathrm{C}$ and was redistilled after drying with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to give lc ($16.9 \mathrm{~g}, 68 \%$), b.p. $80-82^{\circ} \mathrm{C}$ (lit., ${ }^{16} 73-75^{\circ} \mathrm{C}$), $n_{\mathrm{D}}^{20} 1.4475$; $v_{\max }$ (film)/ $\mathrm{cm}^{-1} 3325(\equiv \mathrm{C}-\mathrm{H}), 2098(\mathrm{C} \equiv \mathrm{C})$ and $1635(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(250 \mathrm{MHz}) 5.25\left(1 \mathrm{H}, \mathrm{m},=\mathrm{CH},{ }^{4} J_{\text {trans }} 1.0,{ }^{4} J_{\text {cis }} 1.5\right), 2.99(1 \mathrm{H}$, $\mathrm{brs}, \equiv \mathrm{CH},{ }^{4} J 2.5$), $1.93(3 \mathrm{H}, \mathrm{s}$, cis-Me) and $1.82(3 \mathrm{H}, \mathrm{s}$, trans$\mathrm{Me}) ; \delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 150.33(\mathrm{C}), 104.56(\mathrm{HC}=), 81.80(\equiv \mathrm{C}-), 79.20$ ($\mathrm{HC} \equiv$), 24.70 (trans-Me) and 20.86 (cis-Me).

4-Methyl-3-phenylpent-3-en-1-yne $\mathbf{1 e}$.-To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathrm{HC} \equiv \mathrm{CMgBr}(0.7 \mathrm{~mol})$ in THF ($300 \mathrm{~cm}^{3}$) 2-methyl-1-phenylpropan-1-one ($74.0 \mathrm{~g}, 0.50 \mathrm{~mol}$) was added dropwise during 1.5 h . The mixture was stirred for 3 h at $20^{\circ} \mathrm{C}$ and then treated with $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($500 \mathrm{~cm}^{3}$). The upper organic layer was separated, the water layer was extracted with ether ($2 \times 150 \mathrm{~cm}^{3}$). Extracts were combined with the organic layer. After removal of solvents a residue was diluted with ether, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated in vacuo. A residue was distilled to give 4-methyl-3-phenylpent-1-yn-3-ol ($84.4 \mathrm{~g}, 97 \%$), b.p. $82^{\circ} \mathrm{C} / 0.3 \mathrm{mmHg}$.

Through a heated $\left(250^{\circ} \mathrm{C}\right)$ quartz tube $(1 \times 17 \mathrm{~cm})$ filled with anhydrous $\mathrm{MgSO}_{4}\left(10 \mathrm{~cm}^{3}\right)$ and evacuated to 15 mmHg , 4-methyl-3-phenylpent-1-yn-3-ol ($10.0 \mathrm{~g}, 57.0 \mathrm{mmol}$) was passed in 1.5 h . A crude product (5.98 g) was separated using a chromatographic column (CC) eluted with hexane ($200 \mathrm{~cm}^{3}$) to yield 1e ($5.07 \mathrm{~g}, 57 \%$), b.p. $62-64^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}, n_{\mathrm{D}}^{20} 1.5615$; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3300(\equiv \mathrm{C}-\mathrm{H}), 2089(\mathrm{C} \equiv \mathrm{C}), 1618(\mathrm{C}=\mathrm{C}), 1576$ and $1597(\mathrm{Ph}) ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 7.30(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 3.16(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \equiv \mathrm{CH})$, 2.14 and $1.80(6 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{Me}) ; \delta_{\mathrm{c}}(75 \mathrm{MHz}) 144.58\left(\mathrm{Me}_{2} \mathrm{C}=\right)$, 139.06, 129.09, 128.10, 126.91 (Ph), 118.24 (C), 84.36 (三C-), 80.13 ($\mathrm{HC} \equiv$), 23.87 and 21.41 (2 Me); $m / z 156\left(\mathrm{M}^{+}, 49 \%\right.$), 141 (40), 128 (12), 115 (46), 91 (7) and 77 (12).

General Procedure for $\mathrm{Rh}^{\mathrm{II}}$-Promoted Interaction of Methyl Diazoacetate (MDA) with Enynes 1.-To an intensively stirred
solution of enyne $1(0.30 \mathrm{~mol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$ green crystals of $\left.\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(0.10 \mathrm{~g}, 0.23) \mathrm{mmol}\right)$ were added. A green solution was formed immediately. To the coloured mixture a solution of MDA $(0.10 \mathrm{~mol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ was added dropwise during 8 h and stirred at the same temperature $\left(20^{\circ} \mathrm{C}\right)$ for an additional 0.5 h . After evaporation of a solvent dimethyl anti-1,2-dialkenyltricyclo[3.1.0.0 $0^{2,4}$]hexan-3,6-dicarboxylates 2 were separated from a residue by CC. The properties of 2 are presented in Tables 1-3.

Methyl cis/trans-2-methyl-2-ethynylcyclopropanecarboxylate 4 was isolated as a mixture ($1: 1$) of cis/trans-isomers with b.p. $70-75^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$ by distillation of the corresponding reaction mixture at $70^{\circ} \mathrm{C}$ (bath temperature) $/ 0.5 \mathrm{mmHg}$ before $\mathbf{2 b}$ separated, $\mathbf{4}$ being collected into a cooled $\left(-30^{\circ} \mathrm{C}\right)$ trap. The individual isomers were separated by CC. trans-4, $n_{\mathrm{D}}^{20} 1.4565$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3294(\equiv \mathrm{C}-\mathrm{H}), 2117(\mathrm{C} \equiv \mathrm{C})$ and $1732(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(250 \mathrm{MHz}) 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.09\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}^{\mathrm{c}}, J_{\mathrm{bc}} 8.5, J_{\mathrm{ac}}\right.$ 6.5), $1.94(1 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH}), 1.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.38\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}^{\mathrm{b}}, J_{\mathrm{ab}}\right.$ $4.5)$ and $1.29\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}^{\mathrm{a}}\right)$; $\delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 170.66(\mathrm{C}=\mathrm{O}), 88.21$ $(-\mathrm{C} \equiv), 64.86(\mathrm{HC} \equiv), 51.58(\mathrm{OMe}), 27.64\left(\mathrm{CH}^{\mathrm{c}}\right), 21.95\left(\mathrm{CH}_{2}\right)$, $17.29(\mathrm{Me})$ and $16.10(\mathrm{C}) ; m / z 138\left(\mathrm{M}^{+}, 23 \%\right), 123(47), 110$ (23), 109 (11), 107 (27), 96 (22), 95 (32), 87 (16), 83 (22), 80 (10), 79 (53), 78 (27) and 77 (95). cis-4, $\mathrm{n}_{\mathrm{D}}^{20} 1.4590 ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ $3290(\equiv \mathrm{C}-\mathrm{H}), 2117(\mathrm{C} \equiv \mathrm{C})$ and $1736(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 3.73$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.02(1 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH}), 1.77\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}^{\mathrm{c}}, J_{\mathrm{ac}} 8.0, J_{\mathrm{bc}}\right.$ 6.5), $1.62\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}^{\mathrm{b}}, J_{\mathrm{ab}} 4.5\right), 1.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $1.07(1 \mathrm{H}$, dd, $\left.\mathrm{H}^{\mathrm{a}}\right) ; \delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 170.33(\mathrm{C}=0), 84.41(-\mathrm{C} \equiv), 67.51(\mathrm{HC} \equiv)$, $51.58(\mathrm{OMe}), 28.88\left(\mathrm{CH}^{\mathrm{c}}\right), 24.71\left(\mathrm{CH}_{2}\right), 21.90(\mathrm{Me})$ and 16.70 (C); m / z the same as for trans-4.

Methyl 2-prop-2-enylcyclopropene-3-carboxylate 10 and methyl cis/trans-2-prop-2-ynyl-cyclopropanecarboxylate 11.The interaction of $\mathbf{1 h}$ with MDA was run according to the general procedure. After MS-GC-analysis the reaction mixture was separated by CC into the cyclopropene $\mathbf{1 0}(37 \%)$ as a viscous oil, $n_{\mathrm{D}}^{20} 1.4798$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1828$ (cyclo-C=C), 1728 $(\mathrm{C}=0)$ and $1639(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 6.46(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=$, cyclo, $\left.{ }^{3} J 1.7,{ }^{4} J 1.5\right), 5.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=,{ }^{3} J_{\text {cis }} 10.1,{ }^{3} J_{\text {trans }} 16.5,{ }^{3} J 6.2\right.$), $5.21\left(1 \mathrm{H}, \mathrm{dm}\right.$, cis-H, $\left.=\mathrm{CH}_{2},{ }^{2} J 1.8,{ }^{4} J 1.6\right), 5.14(1 \mathrm{H}, \mathrm{dm}$, trans$\left.\mathrm{H},=\mathrm{CH}_{2},{ }^{4} \mathrm{~J} 1.6\right), 3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.27\left(2 \mathrm{H}, \mathrm{dm}, \mathrm{CH}_{2}\right)$ and $2.20(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}$, cyclo $) ; \delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 176.83(\mathrm{C}=\mathrm{O}), 131.89$ $(\mathrm{CH}=), 117.53\left(\mathrm{CH}_{2}=\right), 113.62(\mathrm{C}), 95.37(\mathrm{CH}=$, cyclo $), 51.86$ (OMe), $29.27\left(\mathrm{CH}_{2}\right)$ and $19.64(\mathrm{CH}) ; m / z 137\left([\mathrm{M}-1]^{+}, 4 \%\right)$, 123 (12), 111 (4), 107 (7), 95 (13), 79 (100) and 77 (87); and a mixture ($1: 1$) of cyclopropanes cis/trans- $11(28 \%)$, as an oil, $\nu_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3332(\mathrm{H}-\mathrm{C}=), 2121(\mathrm{C}=\mathrm{C})$ and $1751(\mathrm{C}=\mathrm{O}) ; \mathrm{m} / \mathrm{z}$ ($[\mathrm{M}-1]^{+}, 2 \%$), 109 (7), 107 (22), 95 (20), 80 (12), 79 (100), 78 (63), 77 (97), 67 (15) and $59(40) ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ for cis- 113.71 (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.56\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{CH}_{2},{ }^{2} J 17.0,{ }^{3} J 6.5\right), 2.42(1 \mathrm{H}$, ddd, $\left.\mathrm{CH}_{2},{ }^{3} J 7.5\right), 1.98\left(1 \mathrm{H}, \mathrm{t}, \mathrm{CH} \equiv,{ }^{4} J 2.5\right), 1.80\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}^{\mathrm{d}}, J_{\mathrm{dc}}\right.$ $\left.8.3, J_{\text {db }} 7.8, J_{\text {da }} 5.5\right), 1.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\mathrm{c}}\right), 1.14\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}^{\mathrm{b}}, J_{\mathrm{ab}}\right.$ $\left.4.5, J_{\mathrm{bc}} 8.1\right)$ and $1.03\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}^{\mathrm{a}}, J_{\mathrm{ac}} 6.8\right)$; for trans-11 3.69 (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.98\left(1 \mathrm{H}, \mathrm{t}, \mathrm{HC} \equiv,{ }^{4} \mathrm{~J} 2.5\right), 1.65$ $\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}^{\mathrm{d}}, J_{\mathrm{da}} 9.0, J_{\mathrm{db}} 6.1, J_{\mathrm{dc}} 4.0\right), 1.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\mathrm{c}}\right), 1.20(1$ H , ddd, $\left.\mathrm{H}^{\mathrm{a}}, J_{\mathrm{ab}} 4.3, J_{\mathrm{ac}} 4.6\right)$ and $0.98\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}^{\mathrm{b}}, J_{\mathrm{bc}} 8.5\right)$; $\delta_{\mathrm{c}}(22.5 \mathrm{MHz})$ for cis -11 $172.47(\mathrm{C}=\mathrm{O}), 82.68(-\mathrm{C} \equiv), 68.22(\mathrm{HC} \equiv)$ $51.29(\mathrm{OMe}), 19.97\left(\mathrm{CH}^{\mathrm{c}}\right), 17.51\left(\mathrm{CH}^{\mathrm{d}}\right), 16.56\left(\mathrm{CH}_{2}\right)$ and 13.47 $\left(\mathrm{CH}_{2}\right.$, cyclo); for trans-11 $173.80(\mathrm{C}=\mathrm{O}), 80.19(-\mathrm{C} \equiv), 69.68$ $(\mathrm{HC} \equiv), 51.29(\mathrm{OMe}), 20.38\left(\mathrm{CH}_{2}\right), 19.27\left(\mathrm{CH}^{\mathrm{c}}\right), 18.40\left(\mathrm{CH}^{\mathrm{d}}\right)$ and $13.47\left(\mathrm{CH}_{2}\right.$, cyclo).

Dimethyl trans-5,8-Dimethyl-1,4,6,7-tetrahydronaphthalene1,4 -dicarboxylate $\mathbf{6 b}$.-A solution of $2 \mathrm{~b}(0.42 \mathrm{~g}, 1.52 \mathrm{mmol})$ in m xylene ($4 \mathrm{~cm}^{3}$) was refluxed for 2.5 h . The solvent was evaporated and the residue was purified by $\mathbf{C C}$ to afford 6 b (0.41 $\mathrm{g}, 98 \%$) as a yellow oil, $n_{\mathrm{D}}^{20} 1.5248 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1732(\mathrm{C}=\mathrm{O})$ and $1651(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 5.90\left(2 \mathrm{H}, \mathrm{d}, \mathrm{HC}=,{ }^{3} J 2.2\right), 4.19$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{HC}), 3.67(6 \mathrm{H}, \mathrm{s} . \mathrm{OMe}), 2.21-1.85\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and
$1.80(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 172.61(\mathrm{C}=\mathrm{O}), 130.89(\mathrm{C}-5$ and -8), 124.72 (C-2 and -3), 122.12 (C-9 and -10), 51.80 (OMe), 43.46 ($\mathrm{C}-1$ and -4), 29.59 ($\mathrm{C}-6$ and -7) and 19.40 (Me); $m / z 276$ ($\mathrm{M}^{+}, 1 \%$), 261 (2), 245 (3), 244 (2), 217 (8), 215 (10), 199 (9), 173 (8), 157 (20), 141 (11), 128 (13), 115 (17) and 105 (11).

Dimethyl trans-1,2-Di(2-methylprop-1-enyl)cyclohexa-1,4-di-ene-3,6-dicarboxylate 7c and Dimethyl trans-1,2-Di(cyclohex-1-enyl)cyclohexa-1,4-diene-3,6-dicarboxylate 7d.-A solution of $2 \mathrm{c}(0.50 \mathrm{~g}, 1.64 \mathrm{mmol})$ in toluene $\left(5 \mathrm{~cm}^{3}\right)$ was refluxed for 3 h . A solvent was evaporated and the residue was purified by CC to afford $7 \mathrm{c}(0.50 \mathrm{~g}, \sim 100 \%$) as crystals. In a similar way, $\mathbf{2 d}$ (70 $\mathrm{mg}, 0.2 \mathrm{mmol}$) gave $7 \mathrm{~d}(60 \mathrm{mg}, 86 \%)$ as crystals upon refluxing in m-xylene ($3 \mathrm{~cm}^{3}$) for 4 h . The properties of 7 c and \mathbf{d} are presented in Tables 1-3.

Methyl 2,5-Di(methoxycarbonyl)-6-(2-methoxycarbonylethyl) cinnamate 8.-By the same procedure $2 \mathrm{f}(25 \mathrm{mg}, 0.07$ mmol) was converted into 7 f (toluene, $2 \mathrm{~cm}^{3}$, reflux, 3 h). The NMR spectra were taken for a raw material (Tables 2, 3) and the oil (30 mg) was eluted through a column filled with silica gel by the solvent mixture to yield $\mathbf{8}(22 \mathrm{mg}, 88 \%)$ as a white solid, $v_{\max }($ film $) / \mathrm{cm}^{-1} 1728(\mathrm{C}=\mathrm{O})$ and $1647(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 8.07$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{HC}=,{ }^{3} J 16.1$), 7.84 and 7.70 ($2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{HC}, \mathrm{Ar},{ }^{3} J 8.1$), $5.89(1 \mathrm{H}, \mathrm{d},=\mathrm{CHCO}), 3.95,3.88,3.84$ and $3.72(12 \mathrm{H}, 4 \mathrm{~s}, \mathrm{OMe})$, $3.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $2.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz})$ 172.79 ($\mathrm{C}=\mathrm{O}, \mathrm{Ar}$), 167.42, 166.07 ($\mathrm{C}=\mathrm{O}$), 143.21 ($\mathrm{H} C=\mathrm{CHCO}$), 140.27, 137.21, 134.24, 134.00 ($\mathrm{C}=\mathrm{C}, \mathrm{Ar}$), 130.18, 127.63 $(\mathrm{HC}=\mathrm{CH}, \mathrm{Ar}), 124.32(\mathrm{HC}=\mathrm{CHCO}), 52.61(\mathrm{OMe}, \mathrm{Ar}), 51.95$, $51.77(\mathrm{OMe}), 34.39\left(\mathrm{CH}_{2}\right)$ and $26.07\left(\mathrm{CH}_{2} \mathrm{CO}\right)$.

An Alternative Synthesis of 2c by Desilylation of Methyl 1-Trimethylsilyl-2-(2-methylprop-1-enyl)cyclopropene-3-carboxylate 9.-To a stirred solution of $\mathrm{KF} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.42 \mathrm{~g}, 4.47 \mathrm{mmol})$ in DMF ($5 \mathrm{~cm}^{3}$) and water $\left(0.5 \mathrm{~cm}^{3}\right), 9(0.67 \mathrm{~g}, 3.0 \mathrm{mmol})$ was added at $25^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 1.5 h , diluted with $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($50 \mathrm{~cm}^{3}$) and extracted with ether ($2 \times 30 \mathrm{~cm}^{3}$). Combined extracts were washed with $\mathrm{NH}_{4} \mathrm{Cl}$ solution $\left(3 \times 50 \mathrm{~cm}^{3}\right)$ and were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$.

Solvents were evaporated and a residue was purified by CC to afford $2 \mathrm{c}(0.39 \mathrm{~g}, 86 \%)$ as a white solid.

References

1 O. M. Nefedov, E. A. Shapiro and A. B. Dyatkin, Diazoacetic Acids and Derivatives, in S. Patai, Supplement B: The Chemistry of Acid Derivatives, Wiley-Interscience, New York, 1992, vol. 2, part 2, ch. 25, pp. 1475-1638.
2 E. A. Shapiro, T. N. Romanova, I. E. Dolgii and O. M. Nefedov, Izv. Akad. Nauk. SSSR, Ser. Khim., 1984, 2535 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1984, 2323).

3 R. N. Gmyzina, I. A. D'yakonov and L. P. Danilkina, Zh, Org. Khim., 1970, 6, 2168 [J. Org. Chem. USSR (Engl. Transl.), 1970, 6, 2178].
4 T. R. Hoye, C. J. Dinsmore, D. S. Johnson and P. F. Korkowski, J. Org. Chem., 1990, 55, 4518.

5 E. A. Shapiro, A. V. Kalinin and O. M. Nefedov, Mendeleev Commun., 1992, 116.
6 C. D. Poulter, R. S. Boikess, J. I. Brauman and S. Winstein, J. Am. Chem. Soc., 1972, 94, 2291
7 P. N. Skancke, Acta Chem. Scand., Ser. A, 1982, 6, 513.
8 A. J. Schipperijn and J. Lukas, Tetrahedron Lett., 1972, 231.
9 E. A. Shapiro, A. V. Kalinin, D. N. Platonov and O. M. Nefedov, Izv. Akad. Nauk, 1993, 1248 (Russ. Chem. Bull., 1993, 42, 7)
10 W. E. Billups and L.-J. Lin, Tetrahedron, 1986, 42, 1575.
11 O. M. Nefedov, I. E. Dolgii, G. P. Okonnishnikova and I. B. Schwedova, Angew. Chem., 1972, 84, 946.

12 M.P. Doyle, R. L. Dorow, W. E. Buhro, J. H. Griffin, W. H. Tamblyn and M. L. Trudell, Organometallics, 1984, 3, 44; A. J. Anciaux, A. Demonceau, A. F. Noels, R. Warin, A. J. Hubert and P. Teyssie, Tetrahedron, 1983, 39, 2169.
13 J. C. Hamlet, H. B. Henbest and E. R. H. Jones, J. Chem. Soc., 1951, 2652.

14 S. I. Panchenko, N. A. Bychkova, G. P. Yurevich, N. V. Zotchik and I. A. Rubtsov, Zh. Org. Khim., 1982, 18, 2489; Chem. Abstr., 1983, 98, 143516 g.
15 A. V. Kalinin, E. A. Shapiro, Yu, V. Tomilov, B. I. Ugrak, A. M. Tsatsakis and O. M. Nefedov, Mendeleev Commun., 1993, 190.
16 A. Mondon, Justus Liebigs Ann. Chem., 1952, 577, 181.

Paper 3/05496I
Received 14th September 1993
Accepted 9th November 1993

